Interferometric Optics

2020 Optics Catalog

Fine optics for research: US designed... made with US materials

Contents

1. Multiple-Prism Beam Expanders
2. Multiple-Prism Pulse Compressors
3. Amici Prism Arrays

www.interferometricoptics.com
interferometricoptics@gmail.com

P. O. Box 16583, Rochester, New York 14616, USA
Multiple-Prism Beam Expanders†

<table>
<thead>
<tr>
<th>(M)</th>
<th>Number of Prisms</th>
<th>Prisms Height</th>
<th>Exit Aperture</th>
<th>Deployment Configuration††</th>
<th>Dispersion†††</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>2</td>
<td>10 mm</td>
<td>20 mm</td>
<td>+ −</td>
<td>((\partial \phi / \partial \lambda) = 0) @ 590 nm††††</td>
</tr>
<tr>
<td>120</td>
<td>3</td>
<td>10 mm</td>
<td>30 mm</td>
<td>+ + −</td>
<td>((\partial \phi / \partial \lambda) = 0) @ 590 nm††††</td>
</tr>
</tbody>
</table>

† Made of fused silica. Detailed angular deployment position of each prism supplied. All beam incidence and beam exit prisms surfaces polished to \(\lambda/10 \) over 90%. Only the hypotenuse and the exit surfaces are polished. All prism angles are specified within 5 arc min.

†† Simple deployment of the last prism to a positive configuration (+) provides a highly dispersive arrangement.

††† Assumes an original unexpanded beam diameter of 200μm. For \(M = 81 \) the expanded beam is 16.2 mm and for \(M = 120 \) the expanded beam is 24 mm.

†††† Quoted dispersion is for deployment in a compensating configuration. Large dispersion values can be obtained by deploying the prisms in an additive configuration.

Note: special designs, for specific \(M \) factors and optical materials, are available up on request.

Bibliography

Multiple-Prism Pulse Compressors†

<table>
<thead>
<tr>
<th>Number of Prisms</th>
<th>Prism Material</th>
<th>Design λ (nm)</th>
<th>Prism Class</th>
<th>Dimensions†† (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Fused silica</td>
<td>620</td>
<td>Near Isosceles</td>
<td>30 mm</td>
</tr>
<tr>
<td>2</td>
<td>Fused silica</td>
<td>800</td>
<td>Near Isosceles</td>
<td>30 mm</td>
</tr>
<tr>
<td>2</td>
<td>NSF 10</td>
<td>620</td>
<td>Near Isosceles</td>
<td>30 mm</td>
</tr>
<tr>
<td>2</td>
<td>NSF 10</td>
<td>800</td>
<td>Near Isosceles</td>
<td>30 mm</td>
</tr>
</tbody>
</table>

† Designed for incidence at the Brewster angle. Detailed angular deployment position of each prism supplied. All beam incidence and beam exit prisms surfaces polished to $\lambda/10$ over 90%. Only the incidence and exit surfaces are polished. All prism angles are specified within 5 arc min.

†† Refers to the incidence and exit surfaces. Prism height (or thickness) is 10 mm.

Special designs, for specific wavelengths or optical materials, are available up on request.

Special designs for Amici Prism arrays, for applications in astronomical instrumentation, are also available up on request.

Bibliography

